The Maximal C*-algebra of Quotients as an Operator Bimodule

نویسنده

  • MARTIN MATHIEU
چکیده

We establish a description of the maximal C*-algebra of quotients of a unital C*-algebra A as a direct limit of spaces of completely bounded bimodule homomorphisms from certain operator submodules of the Haagerup tensor product A ⊗h A labelled by the essential closed right ideals of A into A. In addition the invariance of the construction of the maximal C*-algebra of quotients under strong Morita equivalence is proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A-B-imprimitivity bimodule frames

Frames in Hilbert bimodules are a special case of frames in Hilbert C*-modules. The paper considers A-frames and B-frames and their relationship in a Hilbert A-B-imprimitivity bimodule. Also, it is given that every frame in Hilbert spaces or Hilbert C*-modules is a semi-tight frame. A relation between A-frames and K(H_B)-frames is obtained in a Hilbert A-B-imprimitivity bimodule. Moreover, the ...

متن کامل

Multipliers of Operator Spaces, and the Injective Envelope

We study the injective envelope I(X) of an operator space X, showing amongst other things that it is a self-dual C∗module. We describe the diagonal corners of the injective envelope of the canonical operator system associated with X. We prove that if X is an operator A-B-bimodule, then A and B can be represented completely contractively as subalgebras of these corners. Thus, the operator algebr...

متن کامل

C*-algebras on r-discrete Abelian Groupoids

We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...

متن کامل

On Local Properties of Hochschild Cohomology of a C- Algebra

Let A be a C∗-algebra, and let X be a Banach A-bimodule. B. E. Johnson showed that local derivations from A into X are derivations. We extend this concept of locality to the higher cohomology of a C ∗-algebra and show that, for every n ∈ N, bounded local n-cocycles from A into X are n-cocycles. The study of the local properties of Hochschild cohomology of a Banach algebra was initiated by intro...

متن کامل

IDEAL J *-ALGEBRAS

A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008